Achieving and Maintaining Polio Eradication

Polio Immunization: Moving Forward NIH, NIAID

September 19 - 20, 2007

Walter A. Orenstein, M.D.

Professor of Medicine and Pediatrics
Director, Emory Vaccine Policy and Development
Associate Director, Emory Vaccine Center

Polio Eradication

The Good News

1988 – 350,000 cases, 125 endemic countries

2006 – 2000 cases, 4 countries never eliminated polio

Last Type 2 – 1999

Type 1 reduced by >90% in Nigeria

Outbreaks from 2005-2006 imported cases stopped in 11 of 16 countries

Wild Type 1 virtually eliminated in Western Uttar Pradesh using mOPV1 campaigns

Polio Eradication

The Bad News

4 countries continuously endemic

Cases reported in 5 other African countries in 2007

Cases reported in Myanmar in 2007

96% of polio cases in India in 2007 as of 7 July with ≥ 4 doses of OPV by history

With mOPV1 campaigns in Western UP, Type 3 resurgent

cVDPV type 2 outbreak now in Nigeria cVDPV type 1 outbreak in Myanmar

Can Wild Virus Polio be Eradicated?

YES – but major challenges

- —Improving quality of SIAs especially in Africa
- Overcoming resistance to vaccination
- Achieving high vaccine coverage in high risk areas including those in conflict
- Overcoming high rates of vaccine failure in India
- Polio eliminated in difficult reservoirs –
 Egypt, Bangladesh, southern Nigeria, most of India and Pakistan

Promising Developments

- MOPV1
- mOPV3
- Type 1 may be eliminated in Western UP i.e., vaccine failure can be overcome
- High rates of vaccination, low rates of refusal encountered in Uttar Pradesh

What else is needed?

- Biggest problem is not technical but social, behavioral, managerial, and political – delivering of vaccine to all in need, early in life
- Evaluation of impact of higher potency mOPV1 – can immunogenicity be improved
- Use of IPV in mass campaigns in high risk areas of India
 - Boosts OPV primed persons
 - Primes and boosts others
 - Induces pharyngeal immunity
 - Induces some gut immunity
 - Good immunogenicity against Type 3

What happens if polio eradication is achieved?

- Continued OPV use, risks development of cVDPVs with phenotypic characteristics of wild virus
- At least 10 outbreaks of cVDPV reported
- Major risk factor low OPV coverage
- Without polio, OPV3 routine coverage now leads to cVDPV and risk may increase as coverage decreases
- Infrastructure needed to control such outbreaks likely to deteriorate
- OPV causes VAPP

Therefore, OPV use should stop posteradication

How should OPV be stopped?

- If greatest risk of cVDPV is low coverage, OPV should be stopped when world immunization coverage is at a peak
- Stopping OPV should not be a country-bycountry decision

Ideally, there would be NIDs in all countries using OPV and then stop

If not, stopping should be coordinated by land mass – e.g., continent

What are the risks post-OPV stoppage?

- Emergence of unrecognized wild virus transmission
- Emergence of cVDPV
- Reintroduction of wild viruses e.g., laboratory escape or intentional
- Reintroduction of vaccine viruses
- iVDPV excretors
- Greater the time without polio, lower the chances of reintroduction but the greater consequences of a reintroduction

Buying insurance in the post-eradication era - I

- OPV stockpiles
- Routine use of IPV universal or targeted
- Questions to be answered
 - Will price be low enough to be economically feasible?
 - Who will pay?
 - If not, can fewer doses or fractional doses achieve adequate immunogenicity and make it economically feasible?
 - Can IPV lead to herd immunity in a tropical setting with poor hygiene?

Buying insurance in the post-eradication era - II

- Questions to be answered (con't)
 - —Can high enough levels of routine coverage with IPV be achieved to induce herd immunity?
 - —Is individual protection a sufficient reason to devote resources to IPV after polio is eradicated?